Giải bài tập SGK toán 8 tập 2 Phần Đại số- Chương 3-Bài 5: Phương trình chứa ẩn ở mẫu

Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 19: Giá trị x = 1 có phải là nghiệm của phương trình hay không ? Vì sao ?

Lời giải

Giá trị x = 1 không phải là nghiệm của phương trình.

Vì tại x = 1 thì Để học tốt Toán 8 | Giải toán lớp 8 có mẫu bằng 0,vô lí

Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 20: Tìm điều kiện xác định của mỗi phương trình sau:

Để học tốt Toán 8 | Giải toán lớp 8

Lời giải

a) Phương trình Để học tốt Toán 8 | Giải toán lớp 8 xác định

Để học tốt Toán 8 | Giải toán lớp 8

Vậy ĐKXĐ của phương trình là x ≠ ±1.

b) x – 2 ≠ 0 khi x ≠ 2

Vậy ĐKXĐ của phương trình là x ≠ 2.

Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 22: Giải các phương trình trong câu hỏi 2

Lời giải

Để học tốt Toán 8 | Giải toán lớp 8

Suy ra x(x + 1) = (x – 1)(x + 4)

Ta có:

x(x + 1) = (x – 1)(x + 4)

⇔ x2 + x = x2 + 4x – x – 4

⇔ x = 3x – 4

⇔ 2x = 4

⇔ x = 2 (thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là : S = {2}

Để học tốt Toán 8 | Giải toán lớp 8

Suy ra 3 = 2x – 1 – x(x – 2)

⇔ 3 = 2x – 1-(x2 – 2x)

⇔ 3 = 2x – 1 – x2 + 2x

⇔ 3 = – 1 – x2

⇔ x2 = -4(vô nghiệm)

Vậy tập nghiệm của phương trình là : S = ∅

Bài 27 (trang 22 SGK Toán 8 tập 2): Giải các phương trình:

Giải bài 27 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

Lời giải:

a) Điều kiện xác định: x ≠ -5.

Giải bài 27 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

  2x – 5 = 3(x + 5)

⇔ 2x – 5 = 3x + 15

⇔ -5 – 15 = 3x – 2x

⇔ x = -20 (thỏa mãn điều kiện xác định).

Vậy phương trình có tập nghiệm S = {-20}.

b) Điều kiện xác định: x ≠ 0.

Giải bài 27 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

  2(x2 – 6) = 2×2 + 3x

⇔ 2×2 – 12 – 2×2 – 3x = 0

⇔ 3x = 12

⇔ x = 4 (Thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm S = {4}.

c) Điều kiện xác định: x ≠ 3.

Giải bài 27 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ x2 + 2x – (3x + 6) = 0

⇔ x(x + 2) – 3(x + 2) = 0

⇔ (x – 3)(x + 2) = 0

⇔ x – 3 = 0 hoặc x + 2 = 0

+ x – 3 = 0 ⇔ x = 3 (Không thỏa mãn đkxđ)

+ x + 2 = 0 ⇔ x = -2 (Thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm S = {-2}.

d) Điều kiện xác định: x ≠ -2/3.

Giải bài 27 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ 5 = (2x – 1)(3x + 2)

⇔ 2x.3x – 3x.1 + 2x.2 – 2.1 = 5

⇔ 6×2 – 3x + 4x – 2 = 5

⇔ 6×2 + x – 7 = 0.

⇔ 6×2 – 6x + 7x – 7 = 0

(Tách để phân tích vế trái thành nhân tử)

⇔ 6x(x – 1) + 7(x – 1) = 0

⇔ (6x + 7)(x – 1) = 0

⇔ 6x + 7 = 0 hoặc x – 1 = 0

+ 6x + 7 = 0 ⇔ 6x = – 7 ⇔ x = -7/6 (thỏa mãn đkxđ)

+ x – 1 = 0 ⇔ x = 1 (thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm Giải bài 27 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

Kiến thức áp dụng

Để giải phương trình chứa ẩn ở mẫu ta cần:

+ Bước 1: Tìm điều kiện xác định (các mẫu thức khác 0).

+ Bước 2: Quy đồng mẫu số cả hai vế của phương trình rồi khử mẫu.

+ Bước 3: Giải phương trình vừa nhận được (Đưa về pt bậc nhất, đưa về pt tích; …)

+ Bước 4: Đối chiếu nghiệm với đkxđ rồi kết luận.

Bài 28 (trang 22 SGK Toán 8 tập 2): Giải các phương trình:

Giải bài 28 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

Lời giải:

a) Điều kiện xác định: x ≠ 1.

Giải bài 28 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ 2x – 1 + x – 1 = 1

⇔ 3x – 2 = 1

⇔ 3x = 3

⇔ x = 1 (không thỏa mãn điều kiện xác định).

Vậy phương trình vô nghiệm.

b) Điều kiện xác định: x ≠ -1.

Giải bài 28 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ 5x + 2x + 2 = -12

⇔ 7x + 2 = -12

⇔ 7x = -14

⇔ x = -2 (thỏa mãn đkxđ)

Vậy phương trình có tập nghiệm S = {-2}

c) Điều kiện xác định: x ≠ 0.

Giải bài 28 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ x3 + x = x4 + 1

⇔ x4 + 1 – x – x3 = 0

⇔ (x4 – x3) + (1 – x) = 0

⇔ x3(x – 1) – (x – 1) = 0

⇔ (x3 – 1)(x – 1) = 0

⇔ (x – 1)(x2 + x + 1)(x – 1) = 0

⇔ x – 1 = 0 (vì x2 + x + 1 = (x + ½)2 + ¾ > 0 với mọi x).

⇔ x = 1 (thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm S = {1}.

d) Điều kiện xác định: x ≠ 0 và x ≠ -1.

Giải bài 28 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ x(x + 3) + (x + 1)(x – 2) = 2.x(x + 1)

⇔ x(x + 3) + (x + 1)(x – 2) – 2x(x + 1) = 0

⇔ x2 + 3x + x2 + x – 2x – 2 – (2×2 + 2x) = 0

⇔ x2 + x2 – 2×2 + 3x + x – 2x – 2x – 2 = 0

⇔ 0x – 2 = 0

Phương trình vô nghiệm.

Kiến thức áp dụng

Để giải phương trình chứa ẩn ở mẫu ta cần:

+ Bước 1: Tìm điều kiện xác định (các mẫu thức khác 0).

+ Bước 2: Quy đồng mẫu số cả hai vế của phương trình rồi khử mẫu.

+ Bước 3: Giải phương trình vừa nhận được (Đưa về pt bậc nhất, đưa về pt tích; …)

+ Bước 4: Đối chiếu nghiệm với đkxđ rồi kết luận.