- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Bài 2: Căn thức bậc hai và hằng đẳng thức
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Luyện tập trang 9
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Bài 3: Liên hệ giữa phép nhân và phép khai phương
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Luyện tập trang 15-16 (Tập 1)
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Bài 4: Liên hệ giữa phép chia và phép khai phương
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1- Luyện tập trang 19-20 (Tập 1)
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Bài 5: Bảng căn bậc hai
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Luyện tập trang 30
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Bài 8: Rút gọn biểu thức chứa căn thức bậc hai
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Luyện tập (trang 33-34)
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Bài 9: Căn bậc ba
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Ôn tập chương 1 phần Đại số
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2 – Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2-Luyện tập trang 45-46
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2-Bài 2: Hàm số bậc nhất
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2-Luyện tập trang 48
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2- Bài 3: Đồ thị của hàm số y = ax + b
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2-Luyện tập trang 51-52
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2-Bài 4: Đường thẳng song song và đường thẳng cắt nhau
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2-Luyện tập trang 55
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2-Bài 5: Hệ số góc của đường thẳng y = ax + b
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2-Luyện tập trang 59
- Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 2-Ôn tập chương 2 phần Đại số
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học – Chương 1-Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học – Chương 1- Luyện tập trang 69-70 Kì 1
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học – Chương 1-Bài 2: Tỉ số lượng giác của góc nhọn
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học – Chương 1-Luyện tập trang 77
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học – Chương 1-Bài 3: Bảng lượng giác
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học – Chương 1-Luyện tập trang 84
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học – Chương 1-Bài 4: Một số hệ thức về cạnh và góc trong tam giác vuông
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học – Chương 1-Luyện tập trang 89
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học – Chương 1-Ôn tập chương 1 phần Hình học
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Luyện tập trang 100-101
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Bài 2: Đường kính và dây của đường tròn
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Luyện tập trang 106
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Bài 4: Vị trí tương đối của đường thẳng và đường tròn
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn.
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Luyện tập trang 111
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Bài 6: Tính chất của hai tiếp tuyến cắt nhau
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Luyện tập trang 116
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Bài 7: Vị trí tương đối của hai đường tròn
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Bài 8: Vị trí tương đối của hai đường tròn (tiếp theo)
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Luyện tập trang 123
- Giải bài tập SGK toán 9 tập 1 Phần Hình Học- Chương 2-Ôn tập chương 2 phần Hình học
- Test post
- Test Post 2
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Bài 1: Phương trình bậc nhất hai ẩn
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Bài 2: Hệ hai phương trình bậc nhất hai ẩn
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Luyện tập trang 12
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Bài 3: Giải hệ phương trình bằng phương pháp thế
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Luyện tập trang 15-16
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Luyện tập trang 19-20 (Tập 2)
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Bài 5: Giải bài toán bằng cách lập hệ phương trình
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Luyện tập trang 24-25
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 3-Ôn tập chương 3 (Câu hỏi – Bài tập)
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Bài 1: Hàm số y = ax2 (a ≠ 0)
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0)
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Luyện tập trang 38-39
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Bài 3: Phương trình bậc hai một ẩn
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Bài 4: Công thức nghiệm của phương trình bậc hai
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4- Bài 5: Công thức nghiệm thu gọn
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Luyện tập trang 49-50
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Bài 6: Hệ thức Vi-ét và ứng dụng
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Luyện tập trang 54
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Bài 7: Phương trình quy về phương trình bậc hai
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Luyện tập trang 56-57
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Bài 8: Giải bài toán bằng cách lập phương trình
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4- Luyện tập trang 59-60
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4- Ôn tập chương 4 (Câu hỏi – Bài tập)
- Giải bài tập SGK toán 9 tập 2 Phần Đại Số – Chương 4-Bài tập ôn cuối năm
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 1: Góc ở tâm. Số đo cung
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Luyện tập trang 69-70 Kì 2
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 2: Liên hệ giữa cung và dây
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 3: Góc nội tiếp
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Luyện tập trang 75-76
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 4: Góc tạo bởi tia tiếp tuyến và dây cung
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Luyện tập trang 79-80
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có ngoài ở bên trong đường tròn
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Luyện tập trang 83
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 6: Cung chứa góc
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Luyện tập trang 87
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Luyện tập trang 87
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 7: Tứ giác nội tiếp
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Luyện tập trang 89-90
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 9: Độ dài đường tròn, cung tròn
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3- Luyện tập trang 95-96
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Bài 10: Diện tích hình tròn, hình quạt tròn
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3- Luyện tập trang 99-100
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Ôn tập chương 3 phần Hình Học
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 4-Bài 1: Hình Trụ – Diện tích xung quanh và thể tích của hình trụ
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 4- Luyện tập trang 111-112-113
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 4-Bài 2: Hình nón – Hình nón cụt – Diện tích xung quanh và thể tích của hình nón, hình nón cụt
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 4-Luyện tập trang 119-120
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 4-Bài 3: Hình cầu. Diện tích mặt cầu và thể tích hình cầu
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 4-Luyện tập trang 126
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 4-Ôn tập chương 4 phần Hình Học
- Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 4-Bài tập ôn cuối năm-Phần Hình Học
Giải bài tập SGK toán 9 tập 2 Phần Hình học – Chương 3-Ôn tập chương 4 phần Hình Học
1. Hãy phát biểu bằng lời:
a) Công thức tính diện tích xung quanh của hình trụ.
b) Công thức tính thể tích của hình trụ.
c) Công thức tính diện tích xung quanh của hình nón.
d) Công thức tính thể tích của hình nón.
e) Công thức tính diện tích của mặt cầu.
f) Công thức tính thể tích của hình cầu.
Trả lời:
a) Diện tích xung quanh hình lăng trụ thì bằng chu vi đường tròn đáy nhân với chiều cao.
b) Thể tích hình trụ thì bằng tích của diện tích hình tròn đáy nhân với đường cao.
c) Diện tích xung quanh hình nón thì bằng 1/2 tích của chu vi đường tròn đáy với đường sinh.
d) Thể tích hình nón bằng 1/3 tích của diện tích hình tròn đáy với chiều cao.
e) Diện tích mặt cầu thì bằng 4 lần diện tích hình tròn lớn.
f) Thể tích hình cầu thì bằng 4/3 tích của diện tích hình tròn lớn với bán kính.
2. Hãy nêu cách tính diện tích xung quanh và thể tích của hình nón cụt.
Trả lời:
Cách 1: Áp dụng công thức
– Với hình nón cụt có các bán kính các đáy là r1, r2, đường sinh l và chiều cao h thì :
Sxq= π(r1+ r2).l
V = 1/3πh(r12+ r22+ r1 r2)
Như vậy :
Diện tích xung quanh hình nón cụt thì bằng tích của số π với tổng hai bán kính và với đường sinh.
Thể tích của hình nón cụt thì bằng 1/3 tích của số π với đường cao h và tổng bình phương các bán kính cộng thêm tích của hai bán kính .
Cách 2: Vì hình nón cụt được cắt ra từ hình nón nên ta có thể tính
V(nón cụt )=V(nón lớn )-V(nón nhỏ )
S(xq nón cụt )=S(xq nón lớn )-S(xq nón nhỏ )
Bài 38 (trang 129 SGK Toán 9 tập 2): Hãy tính thể tích , diện tích bề mặt một chi tiết máy theo kích thước đã cho trên hình 114.
Hình 114
Lời giải
Thể tích phần cần tính gồm:
– Thể tích hình trụ (một đáy) đường kính đáy 11cm, chiều cao 2cm (V1).
– Thể tích hình trụ (một đáy) đường kính đáy 6cm, chiều cao 7cm (V2).
Bài 39 (trang 129 SGK Toán 9 tập 2): Một hình chữ nhật ABCD có AB > AD, diện tích và chu vi của nó theo thứ tự là 2a2 và 6a. Cho hình vẽ quay xung quanh cạnh AB, ta được một hình trụ.
Tính diện tích xung quanh và thể tích của hình trụ này.
Lời giải
Bài 40 (trang 129 SGK Toán 9 tập 2): Hãy tính diện tích toàn phần của các hình tương ứng theo các kích thước đã cho trên hình 115.
Hình 115
Lời giải
a) Hình nón có bán kính đáy r = 2,5m, đường sinh l = 5,6m
⇒ Diện tích đáy: Sđ = π.r2 = 6,25π (m2)
⇒ Diện tích xung quanh: Sxq = π.r.l = 14π (m2)
⇒ Diện tích toàn phần hình nón: Stp = Sđ + Sxq = 20,25π (m2)
b) Hình nón có bán kính đáy r = 3,6m; đường sinh l = 4,8m
⇒ Diện tích đáy: Sđ = π.r2 = 12,96π (m2)
⇒ Diện tích xung quanh: Sxq = π.r.l = 17,28π (m2)
⇒ Diện tích toàn phần hình nón: Stp = Sđ + Sxq = 30,24π (m2).
Kiến thức áp dụng
Hình nón có bán kính đáy r, đường sinh l có:
+ Diện tích xung quanh: Sxq = π.r.l
+ Diện tích toàn phần: Stp = Sxq + Sđ.
Bài 41 (trang 129 SGK Toán 9 tập 2): Cho ba điểm A, O, B thẳng hàng theo thứ tự đó, OA = a, OB = b (a,b cùng đơn vị: cm).
Qua A và B vẽ theo thứ tự các tia Ax và By cùng vuông góc với AB và cùng phía với AB. Qua O vẽ hai tia vuông góc với nhau và cắt Ax ở C, By ở D (xem hình 116).
a) Chứng minh AOC và BDO là hai tam giác đồng dạng; từ đó suy ra tích AC.BD không đổi.
b) Tính diện tích hình thang ABCD khi
c) Với cho hình vẽ quay xung quanh AB. Tính tỉ số thể tích các hình do các tam giác AOC và BOD tạo thành.
a) Chứng minh AOC và BDO là hai tam giác đồng dạng; từ đó suy ra tích AC.BD không đổi.
Lời giải
c) Khi quay hình vẽ xung quanh cạnh AB: ΔAOC tạo nên hình nón, bán kính đáy là AC, chiều cao AO; ΔBOD tạo nên hình nón, bán kính đáy BD, chiều cao OB.
Bài 42 (trang 130 SGK Toán 9 tập 2): Hãy tính thể tích các hình dưới đây theo kích thước đã cho (h.117).
Hình 117
Lời giải
a) Thể tích của hình cần tính gồm:
Một hình trụ đường kính đáy 14cm chiều cao 5,8cm (V1):
Một hình nón đường kính đáy 14cm chiều cao 8,1cm (V2)
Thể tích hình cần tính:
b) Thể tích cần tính là một hình nón cụt, chiều cao 8,2cm; bán kính đường tròn của đáy trên và đáy dưới theo thứ tự là 3,8cm và 7,6cm. Cách tính là lấy thể tích hình nón lớn trừ đi thể tích hình nón bé.
Bài 43 (trang 130 SGK Toán 9 tập 2): Hãy tính thể tích các hình dưới đây theo kích thước đã ho (h.118) (đơn vị : cm).
Hình 118
Lời giải
Bài 44 (trang 130-131 SGK Toán 9 tập 2): Cho hình vuông ABCD nội tiếp đường tròn tâm O, bán kính R và GEF là tam giác đều nội tiếp đường tròn đó, EF là dây song song với AB (h.119). Cho hình đó quay quanh trục GO. Chứng minh rằng:
a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.
b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.
Hình 119
Lời giải
Bài 45 (trang 131 SGK Toán 9 tập 2): Hình 120 mô tả một hình cầu được đặt khít vào trong một hình trụ, các kích thước cho trên hình vẽ.
Hãy tính:
a) Thể tích hình cầu.
b) Thể tích hình trụ.
c) Hiệu giữa thể tích hình trụ và thể tích hình cầu.
d) Thể tích của một hình nón có bán kính đường tròn đáy là r cm và chiều cao 2r cm.
e) Từ các kết quả a), b), c), d) hãy tìm mối liên hệ giữa chúng.
Hình 120
Lời giải
a) Hình cầu bán kính r, vậy thể tích của nó là
b) Hình trụ có bán kính đấy bằng r và chiều cao bằng 2r
Vậy thể tích của nó là: V1 = πr2.2r = 2πr3
c) Thể tích hình trụ trừ đi thể tích hình cầu là:
d) Thể tích hình nón có bán kính đáy r, chiều cao 2r
e) Từ các kết quả trên suy ra: Thể tích hình nón “nội tiếp” trong một hình trụ thì bằng thể tích hình trụ trừ đi thể tích hình cầu nội tiếp trong hình trụ ấy.
Hoặc: Thể tích hình trụ bằng tổng thể tích hình nón và hình cầu nội tiếp hình trụ.