- Giải bài tập SGK toán 10 Phần Đại Số -Chương 1-Bài 1: Hàm số lượng giác
- Giải bài tập SGK toán 10 Phần Đại Số -Chương 1- Bài 2: Phương trình lượng giác cơ bản
- Giải bài tập SGK toán 10 Phần Đại Số -Chương 1- Bài 3: Một số phương trình lượng giác thường gặp
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 1-Ôn tập chương 1
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2- Bài 1: Quy tắc đếm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2- Bài 2: Hoán vị – Chỉnh hợp – Tổ hợp
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2- Bài 3: Nhị thức Niu-tơn
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2-Bài 4: Phép thử và biến cố
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2-Bài 5: Xác suất của biến cố
- Giải bài tập SGK toán 10 Phần Đại Số -Chương 2- Ôn tập chương 2
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 3- Bài 1: Phương pháp quy nạp toán học
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 3-Bài 3: Cấp số cộng
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 3-Ôn tập chương 3
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 4-Bài 1: Giới hạn của dãy số
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 4-Bài 2: Giới hạn của hàm số
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 4-Bài 3: Hàm số liên tục
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 4- Ôn tập chương 4
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5- Bài 1: Định nghĩa và ý nghĩa của đạo hàm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 2: Quy tắc tính đạo hàm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 1: Định nghĩa và ý nghĩa của đạo hàm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 3: Đạo hàm của hàm số lượng giác
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 4: Vi phân
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 5: Đạo hàm cấp hai
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5- Ôn tập chương 5
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5- Ôn tập cuối năm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài tập Ôn tập cuối năm
- Giải bài tập SGK toán 11 Chương 1-Bài 1: Phép biến hình
- Giải bài tập SGK toán 11 Chương 1-Bài 2: Phép tịnh tiến
- Giải bài tập SGK toán 11 Chương 1-Bài 3: Phép đối xứng trục
- Giải bài tập SGK toán 11 Chương 1-Bài 4: Phép đối xứng tâm
- Giải bài tập SGK toán 11 Chương 1-Bài 5: Phép quay
- Giải bài tập SGK toán 11 Chương 1-Bài 6: Khái niệm về phép dời hình và hai hình bằng nhau
- Giải bài tập SGK toán 11 Chương1-Bài 7: Phép vị tự
- Giải bài tập SGK toán 11 Chương1-Bài 8: Phép đồng dạng
- Giải bài tập SGK toán 11 Chương1- Câu hỏi ôn tập chương 1
- Giải bài tập SGK toán 11 Chương1-Bài tập ôn tập chương 1
- Giải bài tập SGK toán 11 Chương1-Câu hỏi trắc nghiệm chương 1
- Giải bài tập SGK toán 11 Chương 2- Bài 1: Đại cương về đường thẳng và mặt phẳng
- Giải bài tập SGK toán 11 Chương 2-Bài 3: Đường thẳng và mặt phẳng song song
- Giải bài tập SGK toán 11 Chương 2- Bài 5: Phép chiếu song song. Hình biểu diễn của một hình không gian
- Giải bài tập SGK toán 11 Chương 2-Câu hỏi ôn tập chương 2
- Giải bài tập SGK toán 11 Chương 2- Bài tập ôn tập chương 2
- Giải bài tập SGK toán 11 Chương 2- Câu hỏi trắc nghiệm chương 2
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 1 : Vectơ trong không gian
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 2 : Hai đường thẳng vuông góc
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 3 : Đường thẳng vuông góc với mặt phẳng
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 4 : Hai mặt phẳng vuông góc
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 5 : Khoảng cách
- Giải bài tập SGK toán 11 phần đại số Chương 3-Câu hỏi ôn tập chương 3
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài tập ôn tập chương 3
- Giải bài tập SGK toán 11 phần đại số Chương 3-Câu hỏi trắc nghiệm chương 3
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài tập ôn tập cuối năm
- Đại Số 11 – Chương 5: 220 câu trắc nghiệm ôn tập chương 5- Tiếp tuyến có lời giải
Để xem lời giải chi tiết SGK lớp 3,4,5,6,7,8,9,10,11,12 vui lòng truy cập website : edusmart.vn
Bài 1 (trang 121 SGK Hình học 11): Trong các mệnh đề sau đây, mệnh đề nào là đúng ?
a) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song ;
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song ;
c) Mặt phẳng (α) vuông góc với đường thẳng b và b vuông góc với thẳng a, thì a song song với (α).
d) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song.
e) Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song.
Lời giải:
a) Đúng
b) Đúng
c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)
d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.
e) Sai, chẳng a và b cùng ở trong mp(P) và mp(α) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.
Bài 2 (trang 121 SGK Hình học 11): Trong các điều khẳng định sau đây, điều nào đúng?
a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
b) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.
d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Lời giải:
Câu a) đúng. Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).
Câu b) sai. Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
Câu c) sai. Vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.
Câu d) sai. Vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.
Bài 3 (trang 121 SGK Hình học 11): Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).
a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng (α) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B‘, C‘, D‘. Chứng minh B‘D‘ song song với BD và AB‘ vuông góc với SB.
Lời giải:
Bài 4 (trang 121 SGK Hình học 11): Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và có góc BAD = 60o. Gọi O là giao điểm của AC và BD. Đường thẳng SO vuông góc với mặt phẳng (ABCD) và SO = 3a/4 . Gọi E là trung điểm của đoạn BC và F là trung điểm của đoạn BE.
a) Chứng minh mặt phẳng (SOF) vuông góc với mặt phẳng (SBC).
b) Tính các khoảng cách từ O và A đến mặt phẳng (SBC).
Lời giải:
Bài 5 (trang 121 SGK Hình học 11): Cho tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có A vuông tại D có CD = a.
a) Chứng minh các tam giác BAD và BDC là các tam giác vuông.
b) Gọi I và K lần lượt là trung điểm của Ad và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC.
Lời giải:
Bài 6 (trang 121 SGK Hình học 11): Cho khối lập phương ABCD.A’B’C’D’ cạnh a.
a) Chứng minh BC’ vuông góc với mặt phẳng (A’B’CD)
b) Xác định và tính độ dài đoạn vuông góc chung của AB’ và BC’.
Lời giải:
Bài 7 (trang 121 SGK Hình học 11): Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có góc …
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).
c) Chứng minh SB vuông góc với SC.
d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.
Lời giải: