Đề thi môn Toán vào 10 (có đáp án – Đề 1)

Đề thi môn Toán lớp 9 vào 10

Đề thi thử vào lớp 10

Môn thi: Toán (Công lập)

Thời gian làm bài: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1 : Điều kiện xác định của biểu thức P = 2018Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án là:

A.x = 5     B.x ≠ 5    C.x ≤ 5    D.x ≥ 5

Câu 2: Trong mặt phẳng tọa độ Oxy, đường thẳng 2x – y = 3 đi qua điểm:

A. (0; 3)     B. (2; 2)   C. ( 1; 3)     D. (5; 0)

Câu 3: Cho hàm số y = -3x2. Kết luận nào sau đây là đúng :

A. Hàm số trên luôn đồng biến

B. Hàm số trên luôn nghịch biến

C. Hàm số trên đồng biến khi x > 0, nghịch biến khi x < 0

D. Hàm số trên đồng biến khi x < 0, nghịch biến khi x > 0

Câu 4: Điều kiện để hàm số y = (- m + 3) x – 7 đồng biến trên R là:

A. m = 3     B. m ≤ 3     C. m ≥ 3     D. x ≠ 3

Câu 5 : Trong các phương trình sau, phương trình nào có tích hai nghiệm bằng -5

A. x2 – 3 x – 5 = 0    B. x2 – 3 x + 5 = 0

C. x2 + 3 x + 5 = 0    D. –x2 – 3 x – 5 = 0

Câu 6: Cho tam giác ABC vuông tại A có đường cao AH có BH = 6 cm; CH = 12 cm. Độ dài cạnh góc vuông AB là:

A.6cm     B.6√2 cm    C.6√3 cm     D.12 cm

Câu 7: Cung AB của đường tròn (O; R) có số đo là 60o. Khi đó diện tích hình quạt AOB là:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Câu 8: Tứ giác MNPQ nội tiếp đường tròn khi:

A.∠MNP + ∠NPQ = 180o     B.∠MNP = ∠MPQ

C. MNPQ là hình thang cân     D. MNPQ là hình thoi

Phần II. Tự luận (Đề thi môn Toán vào 10)

Bài 1: (1 điểm) Cho biểu thức

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Tìm điều kiện đối với a và b để biểu thức P có nghĩa rồi rút gọn biểu thức P

b) Khi a và b là 2 nghiệm của phương trình bậc hai x2 – 3x + 1 =0. Không cần giải phương trình này, hãy chứng tỏ giá trị của P là một số nguyên dương

Bài 2: (1,5 điểm)

a) Tìm điểm cố định của đường thẳng y = (m – 1)x + 2m – 1

b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = mx + 1 và Parabol (P): y = 2x2. Tìm m để đường thẳng (d) đi qua điểm A (3; 7). Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt C (x1, y1) và D (x2, y2). Tính giá trị của T = x1x2 + y1y2

Bài 3: (1,5 điểm) Giải các phương trình và hệ phương trình sau:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

b) 3x4 + x2 – 4 = 0

Bài 4: (3,5 điểm) Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của (O) cắt BC tại S. Gọi I là trung điểm của BC.

a) Chứng minh tứ giác SAOI nội tiếp

b) Vẽ dây cung AD vuông góc với SO tại H. AD cắt BC tại K. Chứng minh SD là tiếp tuyến của đường tròn (O)

c) Chứng minh SK.SI = SB.SC

d) Vẽ đường kính PQ đi qua điểm I (Q thuộc cung CD), SP cắt đường tròn (O) tại M. Chứng minh M, K, Q thẳng hàng.

Bài 5: (0,5 điểm) Cho a, b, c > 0 và a + b + c = 3. Chứng minh rằng:

a5 + b5 + c5 + Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án ≥ 6

Đáp án và Hướng dẫn giải

Phần I. Trắc nghiệm (Đề thi môn Toán vào 10)

1.D 2.A 3.D 4.B
5.A 6.C 7.B 8.C

Phần II. Tự luận

Bài 1:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

b) a, b là 2 nghiệm của phương trình x2 – 3x + 1 =0 nên theo hệ thức Vi-ét ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Thay vào biểu thức

P = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án = 3

Vậy giá trị của P là một số nguyên dương

Bài 2:

a) y = (m – 1)x + 2m – 1

Gọi M (x0 ; y0) là điểm cố định mà đường thẳng y = (m – 1)x + 2m – 1 đi qua với mọi m

=> y0 = (m – 1) x0 + 2m – 1 ⇔ (x0 + 2)m – (y0 + x0 + 1)=0 (*)

Để đường thẳng y = (m – 1)x + 2m – 1 luôn đi qua M (x0 ; y0) với mọi m thì phương trình (*) nghiệm đúng với mọi m

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy đường thẳng y = (m – 1)x + 2m – 1 luôn đi qua M (-2; 1)

b) Để đường thẳng (d): y = mx + 1 đi qua điểm A (3; 7), thì A ∈ d :

7 = m.3 + 1 ⇔ m = 2

Phương trình hoành độ giao điểm của (P) và (d) là:

2x2 = mx + 1 ⇔ 2x2 – mx – 1 = 0

Δ = m2 – 4.2.(-1) = m2 + 8 > 0

=> Phương trình có 2 nghiệm phân biệt, do đó (d) cắt (P) tại 2 điểm phân biệt

Theo định lí Vi-et, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Theo bài ra:

T = x1x2 + y1y2 = x1x2 + (mx1 + 1)(mx2 + 1)

= x1x2 + m(x1 + x2 ) + m2x1x2 + 1Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy T = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 3:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy hệ phương trình đã cho có nghiệm (x; y) = (Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án; -2)

b) 3x4 + x2 – 4 = 0

Đặt x2 = t (t ≥ 0), phương trình trở thành:

3t2 + t – 4 = 0

=> Phương trình có nghiệm t = 1; t = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án (do phương trình có dạng a + b + c = 0)

Do t ≥ 0 nên t = 1

=> x2=1 ⇔ x = ± 1

Bài 4:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Ta có: BC là dây cung, I là trung điểm của BC

=> OI ⊥ BC

Xét tứ giác SAOI có:

∠SAO = 90o (Do SA là tiếp tuyến của (O))

∠SOI = 90o (OI ⊥ BC)

=> ∠SAO + ∠SOI = 180o

=> Tứ giác SAOI là tứ giác nội tiếp

b) Tam giác AOD cân tại O có OH là đường cao

=> OH cũng là trung trực của AD

=> SO là trung trực của AD

=> SA = SA => ΔSAD cân tại S

=> ∠SAD = ∠SDA

Ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án => ∠SAD + ∠OAD = ∠SDA + ∠ODA

⇔ ∠SAO = ∠SDO ⇔ ∠SDO = 90o

Vậy SD là trung tuyến của (O)

c) Xét ΔSAB và ΔSCA có:

∠ASC là góc chung

∠SAB = ∠ACB (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AB)

=> ΔSAB ∼ ΔSCA

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án => SB.SC = SA2 (1)

ΔSAO vuông tại O có AH là đường cao

=> SA2 = SH. SO (2)

Xét ΔSKH và ΔSOI có:

∠SOI là góc chung

∠SHK = ∠SIO = 90o

=> ΔSKH ∼ ΔSOI

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án => SK.SI = SH.SO (3)

Từ (1), (2) và (3) => SK.SI = SB.SC

d) Ta có: ∠PMQ = 90o (Góc nội tiếp chắn nửa đường tròn)

=> PS ⊥ MQ

Xét ΔSAM và ΔSPA có:

∠ASP là góc chung

∠SAM = ∠SPA (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AM)

=> ΔSAM ∼ ΔSPA

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án => SP.SM = SA2

Do đó ta có:

SP.SM = SK.SI Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Xét ΔSKM và ΔSPI có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

∠ISP là góc chung

=> ΔSKM ∼ ΔSPI

=> ∠SMK = ∠SIP = 90o => MK ⊥ SP

Ta có: PS ⊥ MQ ; MK ⊥ SP => M;Q;K thẳng hàng

Bài 5:

Áp dụng bất đẳng thức Co- si, ta được:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> a5 + b5 + c5 + Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án ≥ 2(a2 + b2 + c2 )

Mặt khác: Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> a2 + b2 + c2 ≥ 2 (a + b + c)-3 = 2 . 3 – 3 = 3

=> a5 + b5 + c5 + Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án ≥ 2.3 = 6

Vậy ta được điều phải chứng minh.

(Đề thi môn Toán vào 10)