- Giải bài tập SGK toán 10 Phần Đại Số -Chương 1-Bài 1: Hàm số lượng giác
- Giải bài tập SGK toán 10 Phần Đại Số -Chương 1- Bài 2: Phương trình lượng giác cơ bản
- Giải bài tập SGK toán 10 Phần Đại Số -Chương 1- Bài 3: Một số phương trình lượng giác thường gặp
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 1-Ôn tập chương 1
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2- Bài 1: Quy tắc đếm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2- Bài 2: Hoán vị – Chỉnh hợp – Tổ hợp
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2- Bài 3: Nhị thức Niu-tơn
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2-Bài 4: Phép thử và biến cố
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 2-Bài 5: Xác suất của biến cố
- Giải bài tập SGK toán 10 Phần Đại Số -Chương 2- Ôn tập chương 2
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 3- Bài 1: Phương pháp quy nạp toán học
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 3-Bài 3: Cấp số cộng
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 3-Ôn tập chương 3
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 4-Bài 1: Giới hạn của dãy số
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 4-Bài 2: Giới hạn của hàm số
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 4-Bài 3: Hàm số liên tục
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 4- Ôn tập chương 4
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5- Bài 1: Định nghĩa và ý nghĩa của đạo hàm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 2: Quy tắc tính đạo hàm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 1: Định nghĩa và ý nghĩa của đạo hàm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 3: Đạo hàm của hàm số lượng giác
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 4: Vi phân
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài 5: Đạo hàm cấp hai
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5- Ôn tập chương 5
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5- Ôn tập cuối năm
- Giải bài tập SGK toán 11 Phần Đại Số -Chương 5-Bài tập Ôn tập cuối năm
- Giải bài tập SGK toán 11 Chương 1-Bài 1: Phép biến hình
- Giải bài tập SGK toán 11 Chương 1-Bài 2: Phép tịnh tiến
- Giải bài tập SGK toán 11 Chương 1-Bài 3: Phép đối xứng trục
- Giải bài tập SGK toán 11 Chương 1-Bài 4: Phép đối xứng tâm
- Giải bài tập SGK toán 11 Chương 1-Bài 5: Phép quay
- Giải bài tập SGK toán 11 Chương 1-Bài 6: Khái niệm về phép dời hình và hai hình bằng nhau
- Giải bài tập SGK toán 11 Chương1-Bài 7: Phép vị tự
- Giải bài tập SGK toán 11 Chương1-Bài 8: Phép đồng dạng
- Giải bài tập SGK toán 11 Chương1- Câu hỏi ôn tập chương 1
- Giải bài tập SGK toán 11 Chương1-Bài tập ôn tập chương 1
- Giải bài tập SGK toán 11 Chương1-Câu hỏi trắc nghiệm chương 1
- Giải bài tập SGK toán 11 Chương 2- Bài 1: Đại cương về đường thẳng và mặt phẳng
- Giải bài tập SGK toán 11 Chương 2-Bài 3: Đường thẳng và mặt phẳng song song
- Giải bài tập SGK toán 11 Chương 2- Bài 5: Phép chiếu song song. Hình biểu diễn của một hình không gian
- Giải bài tập SGK toán 11 Chương 2-Câu hỏi ôn tập chương 2
- Giải bài tập SGK toán 11 Chương 2- Bài tập ôn tập chương 2
- Giải bài tập SGK toán 11 Chương 2- Câu hỏi trắc nghiệm chương 2
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 1 : Vectơ trong không gian
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 2 : Hai đường thẳng vuông góc
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 3 : Đường thẳng vuông góc với mặt phẳng
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 4 : Hai mặt phẳng vuông góc
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài 5 : Khoảng cách
- Giải bài tập SGK toán 11 phần đại số Chương 3-Câu hỏi ôn tập chương 3
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài tập ôn tập chương 3
- Giải bài tập SGK toán 11 phần đại số Chương 3-Câu hỏi trắc nghiệm chương 3
- Giải bài tập SGK toán 11 phần đại số Chương 3-Bài tập ôn tập cuối năm
- Đại Số 11 – Chương 5: 220 câu trắc nghiệm ôn tập chương 5- Tiếp tuyến có lời giải
Để xem lời giải chi tiết SGK lớp 3,4,5,6,7,8,9,10,11,12 vui lòng truy cập website : edusmart.vn
Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 80: Xét hai mệnh đề chứa biến P(n): “3n < n + 100” và Q(n): “2n > nn với n ∈ N*.
a) Với n = 1, 2, 3, 4, 5 thì P(n), Q(n) đúng hay sai?
b) Với mọi n ∈ N* thì P(n), Q(n) đúng hay sai?
Lời giải:
a) n = 1: P(n) đúng, Q(n) đúng
n = 2,3,4: P(n) đúng, Q(n) sai
n = 5: P(n) sai, Q(n) sai
b) n = 1: P(n) đúng, Q(n) đúng
n = 2,3,4: P(n) đúng, Q(n) sai
n ≥ 5: P(n) sai, Q(n) sai
Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 81: Chứng minh rằng với n N^* thì
1 + 2 + 3 + … + n = (n(n+1))/2
Lời giải:
– Khi n = 1, VT = 1;
– Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là:
Ta phải chứng minh rằng đẳng thức cũng đúng với n = k + 1, tức là:
Thật vậy, từ giả thiết quy nạp ta có:
Vậy đẳng thức đúng với mọi n ∈ N*
Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 82: Cho hai số 3n và 8n với n ∈ N*.
a) So sánh 3n và 8n khi n = 1, 2, 3, 4, 5.
b) Dự đoán kết quả tổng quát và chứng minh bằng phương pháp quy nạp
Lời giải:
a)n = 1 ⇒ 31 = 3 < 8 = 8.1
n = 2 ⇒ 32 = 9 < 16 = 8.2
n = 3 ⇒ 33 = 27 > 24 = 8.3
n = 4 ⇒ 34 = 81 > 32 = 8.4
n = 5 ⇒ 35 = 243 > 40 = 8.5
b) Dự đoán kết quả tổng quát: 3n > 8n với mọi n ≥ 3
– n = 3, bất đẳng thức đúng
– Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là:
3k > 8k
Ta phải chứng minh rằng bất đẳng thức cũng đúng với n = k + 1, tức là:
3(k + 1) > 8(k + 1)
Thật vậy, từ giả thiết quy nạp ta có:
3(k + 1) = 3k.3 > 8k.3 = 24k = 8k + 16k
k ≥ 3 ⇒ 16k ≥ 16.3 = 48 > 8
Suy ra: 3(k + 1) > 8k + 8 = 8(k + 1)
Vậy bất đẳng thức đúng với mọi n ≥ 3
Bài 1 (trang 82 SGK Đại số 11): Chứng minh rằng với n ∈ N*, ta có các đẳng thức:
Lời giải:
a.Với n = 1, ta có:
VT = 3 – 1 = 2
VP = (3 + 1)/2
Vậy VT = VP (1) đúng với n = 1
Giả thiết (1) đúng với n = k ≥ 1 nghĩa là:
2 + 5 + 8 + …+ 3k – 1 = k(3k + 1)/2 (1a)
Ta chứng minh (1a) đúng với n = k + 1 nghĩa là chứng minh:
Vậy (2) đúng với n = 1
Giả sử đẳng thức đúng với n = k, tức là:
(2) đúng với n = k + 1. Vậy nó đúng với mọi n ∈ N*
Vậy (3) đúng với n = 1
*giả sử đẳng thức (3) đúng với n = k nghĩa là:
Ta phải chứng minh (3a) đúng khi n = k + 1
+ Ta cộng 2 vế của (3) cho (k + 1)2
Vậy đẳng thức đúng với n = k + 1. Do đó, đẳng thức đúng với mọi n ∈ N*
Bài 2 (trang 82 SGK Đại số 11): Chứng minh rằng với n ∈ N*
a. n3 + 3n2 + 5n chia hết cho 3.
b. 4n + 15n – 1 chia hết cho 9
c. n3 + 11n chia hết cho 6.
Lời giải:
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
+ Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
A(k + 1) = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp Ak chia hết 3, hơn nữa 9(k + 1) chia hết 3
Nên An = n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
b.4n + 15n – 1 chia hết cho 9
đặt An = 4n + 15n – 1
với n = 1 => A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử với n = k ≥ 1 ta có:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
+ Ta chứng minh: Ak+1 chia hết 9
Thật vậy, ta có:
Ak+1 = (4k+1 + 15(k + 1) – 1) = 4k.41 + 15k + 15 – 1
= (4k + 15k – 1) + (3.4k + 15) = Ak + 3(4k + 5)
Theo giả thiết quy nạp Ak chia hết 9, hơn nữa:
3(4k + 5) chia hết 9 ( chứng minh tương tự) ∀k≥ 1 nên Ak+1 chia hết 9
Vậy An = 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
c.n3 + 11n chia hết cho 6.
Đặt Un = n3 + 11n
+ Với n = 1 => U1 = 12 chia hết 6
+ giả sử với n = k ≥ 1 ta có:
Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)
Ta chứng minh: Uk+1 chia hết 6
Thật vậy ta có:
Uk + 1 = (k + 1)3 + 11(k +1) = k3 + 3k2 + 3k + 1 + 11k + 11
= (k3 + 11k) + 3k2 + 3k + 12 = Uk + 3(k2 + k + 4)
+ Theo giả thiết quy nạp thì:
Uk chia hết 6, hơn nữa 3(k2 + k + 4) = 3(k(k + 1)+ 4) chia hết 6 ∀k≥ 1 ( 2 số liên tiếp nhân với nhau chia hết cho 2)
Do đó: Uk+1 chia hết 6
Vậy: Un = n3 + 11n chia hết cho 6 ∀n ∈ N*
Bài 3 (trang 82 SGK Đại số 11): Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức:
a.3n > 3n + 1
b.2n+1 > 2n + 3
Lời giải:
a.3n > 3n + 1 (1)
+ Với n = 2 thì (1) <=> 8 > 7
Luôn luôn đúng khi x = 2
+ giả thiết mệnh đề (1) đúng khi
n = k ≥ 2, nghĩa là 3k > 3k + 1
Ta sẽ chứng minh (1) đúng khi n = k + 1 nghĩa là chứng minh:
3k+1 = 3.3k > 3(3k + 1) (theo giả thiết)
3(3k + 1) = 9k + 3 = 3(k +1) + 6k > 3(k + 1) (vì k > 2)
Vậy 3k+1 >3(k + 1) + 1
Mệnh đề đúng với n = k + 1, do đó đúng với mọi n ≥ 2
b. 2k+1 > 2n + 3
+ Với n = 2, ta có: 23 = 8 > 2.2 + 3 = 7
Vậy mệnh đề đúng khi x = 2.
+ giả thiết mệnh đề đúng khi n = k ≥ 2, nghĩa là 2k+1 > 2k + 3 (2)
+ Ta sẽ chứng minh (1) đúng khi n = k + 1, nghĩa là chứng minh:
2[(k+1)+1] > 2(k + 1) + 3 hay 2k+2 > 2k + 5
Nhân hai vế của (2) cho 2, ta được:
2k+1.2 = 2k+1 > 2(2k + 3) = 4k + 6 = 2k + (2k + 6) (3)
Mà k ≥ 2 => 2k + 6 = 2.2 + 6 = 10 > 5
(3) => 2k+1 > 2k + 5 (2)
Mệnh đề đúng với n = k + 1 nên cũng đúng ∀ n ∈ N*.
Bài 4 (trang 83 SGK Đại số 11):
a.Tính S1, S2, S3
b.Dự đoán công thức tính tổng Sn và chứng minh bằng quy nạp.
Lời giải:
Ta chứng minh đẳng thức (1) bằng quy nạp
Với n = 1 thì (1) đúng
Giả sử (1) đúng với n = k, ta có:
Vậy (1) đúng với n = k + 1, do đó đúng với mọi n ∈ N*
Bài 5 (trang 83 SGK Đại số 11): Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là n(n-3)/2
Lời giải:
Số đoạn thẳng (cả cạnh và đường chéo) trong một đa giác lồi n cạnh là Cn2 đoạn thẳng. Suy ra số đường chéo của đa giác lồi có n cạnh là: